Why your LLM bill is exploding — and how semantic caching can cut it by 73%
FeaturedSreenivasa Reddy Hulebeedu Reddy January 10, 2026 CleoP made with MidjourneyOur LLM API bill was growing 30% month-over-month. Traffic was increasing, but not that fast. When I analyzed our query logs, I found the real problem: Users ask the same questions in different ways.”What’s your return policy?,” “How do I return something?”, and “Can I get a refund?” were all hitting our LLM separately, generating nearly identical responses, each incurring full API costs.Exact-match caching, the obvious first solution, captured only 18% of these redundant calls. The same semantic question, phrased differently, bypassed the cache entirely.So, I implemented semantic caching based on what queries mean, not how they’re worded. After implementing it, our cache hit rate increased to 67%,…